Some Theory on Non-negative Tucker Decomposition

نویسندگان

  • Jeremy E. Cohen
  • Pierre Comon
  • Nicolas Gillis
چکیده

Some theoretical difficulties that arise from dimensionality reduction for tensors with non-negative coefficients is discussed in this paper. A necessary and sufficient condition is derived for a low nonnegative rank tensor to admit a non-negative Tucker decomposition with a core of the same non-negative rank. Moreover, we provide evidence that the only algorithm operating mode-wise, minimizing the dimensions of the features spaces, and that can guarantee the non-negative core to have low non-negative rank requires identifying on each mode a cone with possibly a very large number of extreme rays. To illustrate our observations, some existing algorithms that compute the non-negative Tucker decomposition are described and tested on synthetic data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Domain Feature Extraction for Small Event-Related potentials through Nonnegative Multi-Way Array Decomposition from Low Dense Array EEG

Non-negative Canonical Polyadic decomposition (NCPD) and non-negative Tucker decomposition (NTD) were compared for extracting the multi-domain feature of visual mismatch negativity (vMMN), a small event-related potential (ERP), for the cognitive research. Since signal-to-noise ratio in vMMN is low, NTD outperformed NCPD. Moreover, we proposed an approach to select the multi-domain feature of an...

متن کامل

On Tensor Tucker Decomposition: the Case for an Adjustable Core Size

This paper is concerned with the problem of finding a Tucker decomposition for tensors. Traditionally, solution methods for Tucker decomposition presume that the size of the core tensor is specified in advance, which may not be a realistic assumption in some applications. In this paper we propose a new computational model where the configuration and the size of the core become a part of the dec...

متن کامل

Probabilistic non-negative matrix factorisation and extensions

Matrix factorisation models have had an explosive growth in popularity in the last decade. It has become popular due to its usefulness in clustering and missing values prediction. We review the main literature for matrix factorisation, focusing on nonnegative matrix factorisation and probabilistic approaches. We also consider several extensions: matrix tri-factorisation, Tensor factorisation, T...

متن کامل

Compression and Classification of Hyperspectral Images using an Algorithm based on DWT and NTD

Hyperspectral images (HSIs) has become very popular area of research. This paper deals with the compression and classification of Hyperspectral images using Discrete Wavelet Technique in conjunction with Non negative Tucker Decomposition. This algorithm exploits both the spectral and the spatial information of the images. The core idea behind the proposed technique is to apply TD on the DWT coe...

متن کامل

Clustering and Latent Semantic Indexing Aspects of the Nonnegative Matrix Factorization

This paper provides a theoretical support for clustering aspect of the nonnegative matrix factorization (NMF). By utilizing the Karush-Kuhn-Tucker optimality conditions, we show that NMF objective is equivalent to graph clustering objective, so clustering aspect of the NMF has a solid justification. Different from previous approaches which usually discard the nonnegativity constraints, our appr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017